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4 HLRZ, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract. We consider cooperative processes (quantum spin chains and random walks) in one-dimensional
fluctuating random and aperiodic environments characterized by fluctuating exponents ω > 0. At the
critical point the random and aperiodic systems scale essentially anisotropically in a similar fashion: length
(L) and time (t) scales are related as L ∼ (ln t)1/ω. Also some critical exponents, characterizing the
singularities of average quantities, are found to be universal functions of ω, whereas some others do depend
on details of the distribution of the disorder. In the off-critical region there is an important difference
between the two types of environments: in aperiodic systems there are no extra (Griffiths)-singularities.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 64.60.Ak Renormalization-group, fractal,
and percolation studies of phase transitions – 68.35.Rh Phase transitions and critical phenomena

1 Introduction

Quenched disorder often has a strong effect on the co-
operative properties of stochastic processes and strongly
correlated systems, especially in one space dimension. For
example the diffusion process in a one-dimensional envi-
ronment (Sinai’s walk) [1] becomes extremely slow, the
mean-square displacement behaves like [X2(t)]av ∼ ln4 t,
in contrast to the linear t-dependence in the homogeneous
case.

Ultraslow dynamics has recently also been observed in
one-dimensional random quantum spin system [2,3]. The
origin of the slow relaxation in these strongly correlated
systems is again the presence of quenched disorder, and in
particular the vicinity of a quantum critical point. Gen-
erally the presence of quenched disorder has a more pro-
nounced effect on quantum phase transitions, which occur
at zero temperature and are driven by quantum fluctu-
ations, than on the so-called classical phase transitions,
which are driven by thermal fluctuations.

Up to now, these two observations, namely the ultra-
slow diffusion in general one-dimensional disordered envi-
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ronments and the so-called “quantum” activated dynam-
ics in random quantum spin chains, seemed to be unre-
lated. One aim of the present paper is to demonstrate a
intimate connection between both. Another issue is the
question in how far these effects are also present in ape-
riodic, i.e. non-random but nevertheless inhomogeneous
environments. As we will see, relevant aperiodic systems
bear a lot of similarities with completely random systems.
However, also crucial differences exist, in particular in
the so-called off-critical regime, i.e. the Griffiths-McCoy
[4,5] region for the quantum spin chains and the anoma-
lous diffusion regime of the random walk. It is simply not
existent in aperiodic systems. A short account of the lat-
ter issue (random versus relevant aperiodicity) has been
given elsewhere [6].

Although the results we report are of rather general va-
lidity we have, for concreteness and for the lack of space,
to confine ourselves to particular examples. So the pro-
totype of a random quantum spin system is the random
transverse Ising model (random TIM), which has received
considerable interest recently [2,3,7–14]. In one dimension
the model is defined by the Hamiltonian

H = −
∑
l

Jlσ
x
l σ

x
l+1 −

∑
l

hlσ
z
l (1.1)

in terms of the σxl , σzl Pauli matrices at site l. Here
the exchange couplings Jl and the transverse fields hl
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are quenched random variables, taken independently from
distributions π(J) and ρ(h), respectively. The quantum
model in (1.1) is closely related to a two-dimensional clas-
sical Ising model with randomly layered couplings, which
was first introduced and partially solved by McCoy and
Wu [15,16] (see also [17–19]). The quantum control pa-
rameter of the model is defined by

δ =
[lnh]av − [lnJ ]av

var[ln h] + var[ln J]
· (1.2)

For δ < 0 (δ > 0) the system is in the ordered (disor-
dered) phase and at δ = 0 there is a phase transition in
the system. One surprising observation is that at the crit-
ical point some physical quantities are not self-averaging,
thus the typical and the average values of those are differ-
ent. For these observables the critical properties are de-
termined by the so-called rare events, (which occur with
vanishing probability) dominating the mean values.

The average magnetization at the surface, ms and in
the bulk,mb, of the system vanishes as a power law close to
the critical point as ms ∼ δβs and mb ∼ δβ, respectively,
with exponents

βs = 1 and β =
3−
√

5

2
· (1.3)

The average spin-spin autocorrelation function G(l) =
[〈σxi σ

x
i+r〉]av involves the average correlation length ξ,

which diverges at the critical point as ξ ∝ |δ|−ν with the
correlation length exponent

ν = 2 , (1.4)

which differs from the exponent of the typical correlation
function Gtyp(l) = exp([ln〈σxi σ

x
i+r〉]av}, which is

νtyp = 1. (1.5)

The time-dependent correlations of the model are very
special, they differ completely from those in the pure sys-
tem. The autocorrelation function

Gl(t) = [〈σxl (0)σxl (t)〉]av (1.6)

at the critical point decays on a logarithmic scale

Gl(t) ∼ (ln t)−η (δ = 0), (1.7)

where the decay exponent η satisfies the scaling relation
η = β/ν and ηs = βs/ν for site l in the bulk and on
the surface, respectively. Leaving the critical point in any
direction one enters the Griffiths-McCoy regions, in which
the connected autocorrelation function has a power law
decay:

Gl(t) ∼ t
−z(δ) (δ 6= 0), (1.8)

where the dynamical exponent z(δ) is a continuous func-
tion of the parameter δ. Close to the critical point it is
z(δ) ≈ 1/2δ [7]. As a consequence of the power-law de-
cay of the autocorrelations in the Griffiths-McCoy phase

the magnetization is a singular function of the uniform
magnetic field Hx as msing ∝ |Hx|1/z(δ).

The above results about the random TIM are indepen-
dent of the actual form of the probability distribution. It
is often argued that the perturbation caused by the disor-
der, with respect to the pure system, is connected to the
fluctuating energy per spin:

∆(L)/L =
1

L

L∑
l=1

(Jl − [J ]av) ∼ Lω−1. (1.9)

Here L is the linear size of the sequence of couplings Jl
under consideration and ω = ωrand = 1/2 is the fluc-
tuating or wandering exponent. The Harris criterion [20]
makes a statement on behalf of the relevance/irrelevance
of the perturbation of the critical behavior of the pure
system by the above disorder. One compares the strength
of the thermal fluctuations at the critical point with the
fluctuating energy in (1.9) on a length scale L identical to
the correlation length. This yields in a one-dimensional
system Φ = 1 + ν(ω − 1) for the cross-over exponent
[21,22] and indeed, for the random sequence the pertur-
bation is relevant, since with ν = 1 and ω = 1/2 one gets
Φ = 1/2 > 0.

It is known that there are non-random deterministic
sequences, generated through substitutional rules, which
have unbounded fluctuations, so that the corresponding
fluctuating exponent is ω > 0. Having this similarity be-
tween random and aperiodic sequences in mind, one might
ask the question whether or not the fluctuating exponent
ω is the only quantity that determines the critical behavior
of systems with unbounded fluctuations in the couplings.

As an example we consider the Rudin–Shapiro (RS)
sequence [23], which is built on four letters A, B, C and
D with the substitutional rule:

A→ AB, B→ AC, C→ DB, D→ DC. (1.10)

Thus starting with a letter A one proceeds as:
A→ AB→ ABAC→ ABACABDB→ etc., and one may
assign different couplings to the different letters. The fluc-
tuating exponent of the RS-sequence, which was originally
introduced to mimic random fluctuations, ωRS = 1/2, i.e.
just the same as for the random sequence.

We note that up to now the critical behavior of ape-
riodic systems has been studied mainly for such distri-
butions that are non-relevant in the sense of the Harris
criterion (i.e. ω ≤ 0). Especially for marginal sequences
(i.e. ω = 0) non-universal critical behavior coupling de-
pendent anisotropy exponents have been found in exact
calculations for the transverse field Ising chain [24–27].

In the relevant case, ω > 0, there are only a few exact
results, obtained for one specific representation described
after equation (1.10) starting with the letter A. For this
case the magnetization of finite RS-chains of length L at
the critical point has been shown to behave at the two end
points as [28]

ms(RS) ∼ exp(−const .
√
L) (1.11)
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and ms(RS)= const . > 0. Moreover, the lowest excitation
energy at the critical point is given by

ε1(L) ∼ exp(−const .
√
L). (1.12)

We also note on recent Monte-Carlo simulations on the
critical behavior of the Q = 8-state Potts model with lay-
ered aperiodic modulations [29].

In the present paper we are going to study the aver-
age quantities also for aperiodic chains. This means that
for instance for the bulk magnetization we average over
all sites of the system. This averaging process, however,
could be performed in another way. One generates (hypo-
thetically) an infinite sequence through substitution, cut
out segments of length L starting at all different positions
of the (infinite) sequence and then average over all seg-
ments. Then, considering the example of surface magne-
tization one could expect that the two generic situations
in and below equation (1.11) will appear with given prob-
abilities, which are then connected to the average critical
behavior of the system.

The structure of the paper is the following: in Section 2
we present the basic notations of aperiodic sequences used
in the paper. The free fermionic description of the TIM
is given in Section 3. Results about the TIM both at the
critical point and in the off-critical region are presented
in Sections 4 and 5, respectively. We conclude with a final
section on a parallel analysis of the behavior of a random
walk in random or aperiodic environments.

2 Aperiodic substitutional sequences

In this paper we consider sequences generated via substi-
tution on a finite alphabet such that, in the case of two
letters A and B, one substitutes A→ S(A) and B→ S(B).
For the RS-sequence the explicit relations are given in
equation (1.10). The properties of the sequence are gov-
erned by the substitutional matrix:

M =

n
S(A)
A n

S(B)
A

n
S(A)
B n

S(B)
B

 (2.1)

where the matrix element n
S(j)
i is the number of the letters

i occurring in the substitution S(j). The matrix elements
of Mn contain the same numbers in the sequence after n
iterations.

If Ur denotes the right eigenvector of M with eigen-
values Ωr, the asymptotic density of i is given by

ρ(i)
∞ =

U1(i)∑
j U1(j)

, (2.2)

where U1 is the eigenvector corresponding to the leading
eigenvector Ω1. The length of the sequence after n itera-
tions is related to the leading eigenvalue through

Ln ∼ Ω
n
1 . (2.3)

We consider the TIM in (1.1) with a constant transverse
field hl = h in an aperiodic environment. We assign to
each letter in the sequence a coupling constant (for exam-
ple JA and JB). The cumulated deviation ∆(L) from the
average coupling [J ]av in equation (1.9) scales with L as

∆(L) ∝ |Ω2|
n ∝ Lω , (2.4)

where Ω2 is the next-to-leading eigenvalue of the substitu-
tion matrix M and ω is the fluctuating exponent already
defined in (1.9). Combining (2.4, 2.3) one gets

ω =
ln |Ω2|

lnΩ1
· (2.5)

The critical point hc of the system is obtained from the
relation (1.2) with δ = 0 as∑

i

ρ(i)
∞ lnJi = lnhc. (2.6)

In the following we introduce a family of relevant
sequences defined on k-letters (k-general sequence)
A1,A2, . . . ,Ak with the substitutional rules:

A1 → A1A2

Ai → Ai−1Ai+1 1 < i ≤ k/2

Ai → Ai+1Ai−1 k/2 < i < k

Ak → AkAk−1.

(2.7)

The substitutional matrix of the sequence is given by

M =



1 1

1 0 1

1 0 1
. . .

. . .
. . .

1 0 1

1 1


(2.8)

with the eigenvalues

Ωr = 2 cos[
π

k
(r − 1)] r = 1, 2, . . . , k. (2.9)

Thus the fluctuating exponent ω from (2.5) for k-general
sequences is given by

ωk =
ln[2 cos(π/k)]

ln 2
(2.10)

and is positive for k ≥ 4. The leading right eigenvector of
M is just U1(i) = const ., thus the asymptotic density of
letters is given by

ρ(i)
∞ = 1/k. (2.11)

We note that the k-general sequence for k = 2 is just
the Thue-Morse sequence, while for k = 4 we recover the
RS-sequence mentioned in the Introduction in (1.10).
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To complete this section on the introduction of aperi-
odic sequences we have to discuss the averaging process.
As described in the introduction the average for aperiodic
sequences is made in such a way that from a (hypothetical)
infinite sequence segments of length L are cut out start-
ing at all different points in the infinite sequence, these
we call the realizations of length L of the aperiodic se-
quence. Then we average physical observables over these
realizations. The number of different realizations R(L) of
a random (binary) sequence grows exponentially with the
size of the system, whereas in the aperiodic case have a
much slower, namely linear increase:

R(L) = aL (2.12)

with a being some constant. For the RS-chain the number
of different realizations is less than 16L, and one can ob-
tain the exact average value by the following procedure.
Consider the RS-sequence in (1.10) generated from a letter
A, take the first 4L sequels of length L, starting at posi-
tions 1, 2, . . . , 4L and take also their reflection symmetric
counterparts. Then repeat the procedure starting with a
letter D. The averaging then should be performed over
these 16L realizations. Therefore it is possible in numerical
computations to do an exact average for the RS-sequence,
taking into account all different realizations and to obtain
numerically exact results for relatively large (L ≤ 512)
aperiodic chains. For other values of k in the k-general
case the number of different realizations is still linear in
L, however, no similar simple rule to generate all of them
in linear computing time is known to us.

3 Free fermionic representation of the TIM

We consider the TIM in equation (1.1) on a finite chain of
length L with free or fixed boundary conditions, thus we
set JL = 0. The simplest way to calculate various physical
quantities of the model is to transform it into a fermionic
representation according to Lieb, Schultz and Mattis [30].
A detailed description of the method and its application to
different physical quantities can be found in [2], hereafter
referred to as paper I. Here we briefly recapitulate the
main results.

The Hamiltonian (1.1) is expressed in terms of fermion
creation and annihilation operators η+

q and ηq, respec-
tively:

H =
L∑
q=1

εq

(
η+
q ηq −

1

2

)
, (3.1)

where the fermionic energies εq are identical to the non-
negative eigenvalues of the 2L× 2L tridiagonal matrix T

with eigenvectors Vq:

T =



0 h1

h1 0 J1

J1 0 h2

h2 0
. . .

. . .
. . . JL−1

JL−1 0 hL
hL 0


,

Vq =



− Φq(1)

Ψq(1)

− Φq(2)
...

Ψq(L− 1)

− Φq(L)

Ψq(L)


. (3.2)

The magnetization profiles

ml = 〈0|σxl |0〉 (3.3)

for symmetry braking boundary conditions (b.c.) can be
expressed as l × l determinants, whose elements are de-
fined in terms of the components Ψq(i) and Φq(i) of the
eigenvectors Vq in (3.2). If we fix the spin at one end of
the chain, which is equivalent to setting hL = 0, the local
magnetization is given by

mfree
l =

∣∣∣∣∣∣∣∣∣∣
H1 G11 G12 . . . G1l−1

H2 G21 G22 . . . G2l−1

...
...

...
. . .

...

Hl Gl1 Gl2 . . . Gll−1

∣∣∣∣∣∣∣∣∣∣
, (3.4)

where

Hj = Φ1(j)

Gjk = −
∑
q

Ψq(k)Φq(j). (3.5)

The surface magnetization for fixed-spin b.c. ms = m1 is
given by the very simple formula

ms =

1 +
L−1∑
l=1

l∏
j=1

(
hj

Jj

)2
−1/2

, (3.6)

which is exact for any finite system.
The magnetization profile can be calculated analo-

gously (see paper I), when both surface spins are fixed
(++ and +– b.c.s). Finally , for a finite open chain the
ground state expectation value of σxl in (3.3) is identically
zero, due to symmetry. Here, as shown in [10] the matrix-
element profile

mfree
l = 〈1|σxl |0〉 (3.7)
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is of importance, which is formally given by equation (3.4)
with hL 6= 0.

Here we note on a simple estimate for the excitation
energy ε1(L) in a open chain of length L [26]:

ε1(L) ∼ msms hL

L−1∏
i=1

hi

Ji
· (3.8)

provided limL→∞ ε1(L)L = 0. Here ms and ms denote
the finite size surface magnetizations at both ends of the
chain, as defined in equation (3.6) (forms simply replacing
hj/Jj by hL−j/JL−j in this equation).

Next we consider the dynamical correlation functions
of the system as a function of the imaginary time τ :

Gl(τ) = 〈0|σxl (τ)σxl (0)|0〉 . (3.9)

For surface spins this can be expressed in the simple form

G1(τ) =
∑
q

|Φq(1)|2 exp(−τεq) . (3.10)

whereas in the bulk Gl(τ) can be expressed as a Pfaffian
that can be evaluated via a determinant of l × l antisym-
metric matrix (see paper I for details).

4 Critical properties

In what follows we take for the Hamiltonian (1.1) homo-
geneous fields hl = h and two-valued couplings, say Jl = λ
and Jl = 1/λ. For the k-general sequence in (2.7) Jl = λ
for letters Ai with i < (k + 1)/2 and Jl = 1/λ for let-
ters with i > (k + 1)/2. For an odd k we take Jl = 1 for
i = (k+ 1)/2. Thus for the RS-sequence in (1.10) we have
JA = JB = λ and JC = JD = 1/λ. Then from (2.6) and
(2.11) for the critical point follows:

δ = lnhc = 0, (4.1)

independently of k. Similarly, for the random model we
take homogeneous fields and binary distribution of the
couplings: Jl = λ and Jl = 1/λ, with the same probabil-
ity. The critical point in this case is also given by equa-
tion (4.1).

4.1 The distribution of low energy excitations

The basic features of the random transverse Ising chain at
criticality have been described in the introduction. Here
we stress again that many unusual properties of the ran-
dom TIM are connected to the extremely broad distri-
bution of the different physical quantities at the critical
point. Concerning the energy gap ∆E in a finite system of
size L the appropriate scaling variable is ln∆E/

√
L. The

reason for this is that the system is essentially anisotropic
at criticality, which means that times and length scale are
related in an exponential rather than algebraic manner,
cf. equation (1.12).
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Fig. 1. (a) Scaling plot of the integrated probability density
Ω(ln∆E) versus the scaling variable (ln∆E/L1/2) for the RS-
sequence (exact average) with λ = 4, cf. equation (4.3). (b)
The same as in (a) for the the random sequence.

For relevant aperiodic systems (i.e. those with a pos-
itive fluctuating exponent ω) one expects from scaling
considerations [21,22,27,28] that the energy gap at the
critical point has a similar scaling relation as in random
systems:

∆E(L) ∼ exp(−const . Lω). (4.2)

This form actually follows from the formula in equa-
tion (3.8) for the energy gap of a sample with local order
at the two ends, i.e. ms = O(1) and ms = O(1), where ms

andms are the surface magnetizations at the left and right
end, respectively, to be calculated with equation (3.6).

Then we have ε1 ∼
∏l−1
i=1

hi
Ji
∼ exp(−ltrln(J/h)), where

ltr ∼ Lω measures the size of the transverse fluctuations
and ln(J/h) is an averaged reduced coupling, from which
(4.2) follows.

To check the validity of the above scaling relation (4.2)
we have investigated the probability distribution of the
energy gap PL(∆E) at the critical point of the RS-chain
and compared it with the same quantity for the random
chain.
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According to equation (4.2) the appropriate scaling
variable is ln∆E/L1/2 for both systems. Indeed, as seen in
Figure 1a, the integrate probability distribution function

ΩL(ln∆E) =

∫ ln∆E

−∞
dy P̃L(y) ∼ Ω̃(ln∆E/

√
L) (4.3)

with P̃L(ln∆E) = PL(∆E)∆E, has a good data collapse
using this reduced variable. Considering the same quan-
tity for the random chain one can observe the same scaling
behavior, as shown in Figure 1b. Thus we can conclude,
that both the random and the RS-chains have logarithmi-
cally broad distribution of the energy gaps at the critical
point, from this fact one expects similar consequences for
the critical behavior in the two systems.

4.2 Surface magnetization

For the TIM the surface magnetization represents perhaps
the most simple order-parameter of the system, which in
the fix-free b.c. is explicitly given by the simple formula in
(3.6). For one single RS-chain, starting with the letter A
this expression has been exactly evaluated at the critical
point with the following results [28].

For λ > 1, when the average couplings at the surface
are stronger than in the bulk, the surface is ordered at the
critical point, so that the surface magnetization is finite:

lim
L→∞

ms(L, λ, h = 1) =
λ2 − 1

√
λ4 − λ2 + 1

λ > 1 (4.4)

and approaches unity in the limit λ → ∞. On the other
hand for λ < 1, when the average couplings at the surface
are weaker than in the bulk the critical surface magneti-
zation vanishes as

ms(L, λ, h = 1) ∼ exp(−const .
√
L). (4.5)

Proceeding by studying the critical point magnetizations
in other sequels of the RS-chain one can notice that the
above two examples are generic: in a sample the surface
magnetization is either finite ms = O(1), or it vanishes
in the stretched exponential form as in equation (4.5).
Therefore the average is dominated by the sample with
finite surface magnetization (“rare events”), which occur
with probability Prare(L) ∝ L−γ . Thus the critical surface
magnetization is not self-averaging, it is determined by
rare events and its scaling dimension xsm defined by the
asymptotic relation [ms(L, h)]av ∼ L−xm is just xsm = γ.

In the following we make extended use of this observa-
tion and calculated xsm exactly. Here we adopt the random
walk picture of paper I. First we assign to each sample
with a given realization of couplings a walk, which starts
at the origin and makes the lth step +1 (−1) for a coupling
Jl = λ (Jl = 1/λ). Second, we take the limit λ → ∞,
in which only those samples have non-vanishing surface
magnetization, where the corresponding walk never visits
sites with negative coordinates. Thus the proportion of
rare events is given by the survival probability of the walk

Prare(L) = Psurv(L). Thus the third point in the study is
to calculate the surviving probability of the walker. For
the random chain the corresponding random walk is char-
acterized by a surviving probability of Psurv ∼ L−1/2,
thus one gets the exact result:

xsm(rand) = 1/2. (4.6)

For the RS-chain we have performed the exact analysis of
the average surface magnetization, the result of which is
presented in the appendix. The leading L-dependence of
it is given by

[ms(L, λ→∞, h = 1)]av =
5

8

(
1
√

2
+

1

4

)
L−1/2

+ O(L−3/4) (4.7)

from which the value of the scaling dimension

xsm(RS) = 1/2. (4.8)

follows. Thus we conclude that the surface magnetization
scaling dimension is the same for the random and the RS-
chain.

In what follows we show that for relevant aperiodic
sequences xsm is a simple function of the fluctuating expo-
nent ω. We consider the scaling behavior of the surviving
probability Psurv(L) of the corresponding aperiodic walk,
performing a discrete scale transformation, which corre-
sponds to a substitutional step of the sequence. Then the
length of the walk scales as L→ LΩ1, whereas the trans-
verse fluctuations ltr scale like ltr → ltr|Ω2|. Then the
number of surviving walks with L steps, N(L), scales
as N(L) → N(LΩ1) = |Ω2|N(L), since the number
of these walks is proportional to the size of the trans-
verse fluctuations. Remembering that the total number
of different sequels is R(L) = aL the survival probability
Psurv(L) = N(L)/R(L) satisfies the scaling relation

Psurv(Ω1L) =
|Ω2|

Ω1
Psurv(L) ⇒ Psurv(L) ∝ L−(1−ω)

(4.9)

from which the value of the surface magnetization scaling
dimension can be read off as

xsm = 1− ω. (4.10)

We have seen by an exact analytical treatment that this
relation is satisfied for the random and the RS-chain. For
the first few members of the family of k-general sequences
we verified equation (4.10) numerically and obtained
xsm(k = 5) = 0.3059(5) and xsm(k = 6) = 0.2076(4), which
is in good agreement with the corresponding prediction
from (4.10) xsm(k = 5) = 0.3058 and xsm(k = 6) = 0.2075,
respectively.

Now we follow the analysis of paper I and calculate the
correlation length critical exponent ν from the δ = lnh de-
pendence of the surface magnetization. In the scaling limit
L � 1, |δ| � 1 the surface magnetization can be written
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as [ms(L, δ)]av = [ms(L, 0)]avm̃s(δL
1/ν). Expanding the

scaling function into a Taylor series m̃s(z) = 1+bz+O(z2)
one obtains for the δ correction to the surface magnetiza-
tion:

[ms(L, δ)]av − [ms(L, 0)]av ∼ δL
Θ (4.11)

with

Θ = 1/ν − xsm. (4.12)

This exponent can also be determined exactly in the
λ → ∞ limit from random walk arguments. As shown
in paper I the surface magnetization of rare events is
given by:

ms(L, δ) = (1 + n)−1/2 − δ

∑n
i=1 li

(n+ 1)3/2
+O(δ2) , (4.13)

where the corresponding surviving walk returns n-times
to its starting point after l1, l2, . . . , ln steps. The largest
contribution to the coefficient of the term proportional to
δ in (4.13) comes from those surviving walks, that have a
large n, i.e. which visit the starting point frequently. For
general aperiodic sequences n grows with the length of the
walk as

n ∼ Lds (4.14)

and we call ds the surface fractal dimension of the surviv-
ing walks. One can check for the k-general sequences that
after two substitutional steps, when L → 4L, the num-
ber of return points scales as n → 2n, thus from equa-
tion (4.14) we get

ds = 1/2 (4.15)

independent of the value k ≥ 4.
Next we are going to perform the average of the linear

term in (4.13). Here we note that among the R(L) differ-
ent samples there are D(L) = O(n) that deliver the same
dominant contribution: each of those has NR(L) = O(n)
return points of characteristic length li ∼ lchar(L) =
O(L). Thus the average of the linear term in (4.13) grows
like D(L) lchar(L) NR(L)/(R(L) n3/2) ∼ Lds/2. Hence,
comparing with (4.11) one gets the exponent relation:

1

ν
− xsm =

ds

2
· (4.16)

The random case ν(rand) = 2 is formally contained in
(4.16) with ds = 0, since a surviving random walk re-
turns n = O(1)-times to the starting point. For the fam-
ily of k-general sequences ds = 1/2 for all values of
k, thus the corresponding correlation length exponent is
ν(k) = 4/(5− 4ωk), with ωk given in (2.10). In particular
for the RS-sequence we get

ν(RS) = 4/3. (4.17)

We have checked this relation numerically by evaluating
exactly the average surface magnetization up to L = 221.

Table 1. Numerical estimates of the exponent Θ in (4.11)
comparing numerically exact results on finite systems of sizes
22l−1 and 22l+1.

l Θ

2 0.19172235

3 0.15877113

4 0.16048277

5 0.17656409

6 0.19500760

7 0.21068687

8 0.22247716

9 0.23086745

10 0.23670532

The two point fits for the exponent Θ in (4.11) comparing
systems of size 22l−1 and 22l+1 are given in Table 1. Using
standard sequence extrapolation techniques [31] on the
data in Table 1 we got an estimate Θ = 0.2501(2) which
is in excellent agreement with the scaling result (4.12) with
(4.17).

For the other members of the k-general sequence the
numerical estimates are ν(k = 5) = 1.82(5) and ν(k =
6) = 2.23(5), what should be compared with the scaling
predictions ν(k = 5) = 1.799 and ν(k = 6) = 2.186,
obtained from equation (4.16).

4.3 Magnetization profiles

In a geometrically constrained finite system at the critical
point the appropriate way to describe the position depen-
dent physical quantities, such as magnetization or energy
density, to use density profiles rather then bulk and sur-
face observables [32]. For two-dimensional classical and
one-dimensional quantum systems with homogeneous cou-
plings conformal invariance provides a useful tool to study
various geometries. Let us consider a critical system con-
fined between two parallel plates, which are at large, but
finite distance L apart, where the local densities φ(r) vary
with the distance l from the plates as a smooth function
of l/L. According to conformal invariance [33]

〈φ(l)〉ab =

[
L

π
sinπ

l

L

]−xφ
Gab(l/L), (4.18)

where xφ is the scaling dimension of the operator φ and the
scaling function Gab(x) depends on the universality class
of the model and on the type of the boundary conditions
to the left a and to the right b. With symmetric b.c. the
scaling function is constant Gaa = A.

In two dimensions conformal invariance can also be
used to predict the critical off-diagonal matrix elements
profiles 〈φ|φ(l)|0〉, where 〈φ| denotes the lowest excited
state leading to a non-vanishing matrix element (see
[2,10]). These off-diagonal profiles give information about
the surface and bulk critical behavior via finite size
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Fig. 2. Scaling plot of the magnetization profile mL(l) with
symmetric (fixed at both ends) boundary condition (4.18) for
the RS-sequence. The inset shows a scaling plot of the off-
diagonal matrix element (4.19) with symmetric (free at both
ends) boundary condition. Here it λ = 4, the bulk magnetiza-
tion exponent is used as a fit parameter: xm = 0.160(1) gives
the best data collapse.

scaling. With symmetric b.c. one obtains for the pro-
file [34]

〈φ|φ(l)|0〉
(π

 L

)xφ [
sinπ

l

L

]xsφ−xφ
(4.19)

which involves also the surface scaling dimension xsφ.
For the random TIM model several profiles have been

calculated in [2,10] and they all follow very well the con-
formal predictions. This coincidence of the numerical and
the conformal results is quite surprising, since the ran-
dom TIM is not conformally invariant due to strongly
anisotropic scaling at the critical point.

Here we consider the same problem for aperiodic chains
and calculate the magnetization profiles for the RS-chain.
In Figure 2 we present the scaling plot of the diagonal and
off-diagonal profiles with symmetric boundary conditions.
Here we take the exact value for the surface magnetiza-
tion scaling dimension xsm from equation (4.8), whereas
the bulk magnetization exponent, xm, is used as a fit pa-
rameter in order to obtain a good data collapse. As seen
in Figure 2 both profiles can be fitted with the same ex-
ponent

xm(RS) = 0.160(5), (4.20)

which turned out to be independent of the parameter λ
and is different from the random chain value predicted by
Fisher [7] to be xm(rand) = (3 −

√
5)/4 = 0.191 . . . The

profiles, however, in analogy to the random case, follow
very well the conformal predictions, both for the diago-
nal and off-diagonal profiles (4.18, 4.19). This is an unex-
pected result, if we take into account that the relevantly
aperiodic Ising chains are not conformally invariant, due
to anisotropic scaling at the critical point.

4.4 Dynamical correlations

Here we consider (imaginary) time dependent correlations
of the same spin, as defined in equation (1.6). One expects
different types of asymptotic behavior of the surface spins
and of the bulk spins. First we consider the bulk autocor-
relation function

G(τ) = [〈σxL/2(τ)σxL/2〉]av (4.21)

and present a scaling consideration, where we essentially
follow the steps of reasoning in the random case [2,3].

The autocorrelation function, like to the (local) mag-
netization, is not self-averaging at the critical point: its av-
erage value is determined by the rare events, which occur
with a probability Pr and Pr vanishes in the thermody-
namic limit. In the random quantum systems the disorder
is strictly correlated along the time axis, consequently in
the rare events with a local order, i.e. with a finite magne-
tization also the autocorrelations are non-vanishing. Un-
der a scaling transformation, when lengths are rescaled as
l′ = l/b, with b > 1 the probability of the rare events
transforms as P ′r = b−xm, like to the local magnetization.
As we said above the same is true for the autocorrelation
function:

G(ln τ) = b−xmG(ln τ/bω) δ = 0, (4.22)

where we have made use of the relation between relevant
time tr and length ξ at the critical point, which follows
from the scaling relation in equation (4.2). Setting the
rescaling factor to b = (ln τ)1/ω we obtain:

G(τ) ∼ (ln τ)−xm/ω. (4.23)

For surface spins in (4.22, 4.23) one should use the surface
magnetization scaling dimension, xsm.

We have numerically calculated the magnetization au-
tocorrelation function both at the surface and in the bulk
for the RS-sequence. The results are depicted in Figure 3.
As can be seen the finite lattice results collapse onto one
single curve (manifesting the absence of finite size effects)
and the critical temporal decay happens on a logarith-
mic scale. The corresponding decay exponents are given
by xm/ω (xsm/ω), for bulk (surface) correlations in agree-
ment with the scaling result in (4.23).

Next we consider the scaling behavior of the energy-
energy autocorrelation function Gel (τ) = [〈σzl (τ)σzl 〉]av.
We note that σzl represents one part of the local energy
operator, the other part of which – σxl σ

z
l+1 – is related to it

through duality, see paper I. Therefore the above autocor-
relation function has essentially the same scaling behavior
as the full energy density.

For the random chain, as was shown in I, the critical
energy autocorrelation function has an asymptotic power
law decay,

Gel (τ) ∼ τ−ηe (4.24)

with the critical exponents ηe(rand) ≈ 2.2 in the bulk and
ηse(rand) ≈ 2.5 on the surface. For the aperiodic RS-chain



F. Iglói et al.: Critical behaviour in one-dimensional random and aperiodic environments 621

0 1 10 100 1000 10000 100000
τ

0

10

20

30

40

L=9
L=17
L=33
L=65
L=129

L/
2

m
G

(τ
)]

[
−

1/
2X

m

4.2 ln   +1.5τ

(a)

1 10 100 1000
τ

0

10

20

30

40

50

60

L=17
L=33
L=65
L=129

1m
G

(τ
)]

[
−

1/
2X

m

7.5ln    −8.1τ

s

(b)

Fig. 3. (a) Bulk spin-spin autocorrelation function of the RS-
sequence GmL/2(τ ) = [〈σxL/2(t)σxL/2〉]av in imaginary time for
various system sizes (and λ = 4). Note that we have chosen L
to be odd, so that L/2 denotes the central spin. In this plot with
[GmL/2(τ )]−1/2xm on linear scale versus τ on a logarithmic scale
the infinite system size limit is expected to lay on a straight
line as indicated. (b) Same as (a) for the surface spin-spin
autocorrelation function Gm1 (τ ) = [〈σx1 (τ )σx1 〉]av in imaginary
time.

the asymptotic decay is also consistent with a power law
decay, as can be seen in Figure 4, both in the bulk and at
the surface of the system. The corresponding exponents

ηe(RS) ≈ 2.4 ηse(RS) ≈ 3.4 (4.25)

are, however, different from those of the random chain.

5 Off-critical properties

In random quantum systems there are Griffiths–McCoy
singularities on the paramagnetic side of the critical point,
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Fig. 4. (a) Bulk energy-energy autocorrelation function
GeL/2(τ ) = [〈σzL/2(τ )σzL/2〉]av in imaginary time for various sys-
tem sizes (and λ = 4) in a log-log plot. The straight line has
slope −2.4, which yields our estimate for the exponent ηe. (b)
Same as (a) for the surface energy-energy autocorrelation func-
tion Ge1(τ ) = [〈σz1(τ )σz1〉]av in imaginary time. The straight line
has slope −3.4, which yields our estimate for the exponent ηse .

which result in a power law decay of the autocorrelation
function G(τ) ∼ τ−1/z(δ), where the dynamical exponent
z(δ) is a continuous function of the control parameter δ. In
the random TIM there is also a Griffiths-McCoy phase on
the ferromagnetic side of the critical point and the values
of the dynamical exponent in the two regions are related
via duality, see paper I.

The long time behavior of the average autocorrelation
function G(τ) is determined by the Laplace transform of
the gap (ε1) distribution function

G(τ) ∼

∫ ∞
0

dεP (ε) exp(−τε). (5.1)
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Fig. 5. (a) The integrated probability density Ω(ln∆E) for
the RS sequence (exact average) with λ = 4 slightly above
the critical point (h = 1.5). The distribution is chopped off
at ln∆E−1

min(h = 1.5) ≈ 7.3. (b) The same as in (a) for the
random chain with binary disorder, λ = 4. Note the larger x-
range as compared with the aperiodic sequence and the absence
of a cut-off for large enough system size. The asymptotic form
of the distribution is Ω(x) ∼ exp(x/z(δ)), where x = ln∆E
and 1/z(h0 = 1.5) = 0.40 (see paper I for details).

Thus the scaling properties of the low energy excitation
are also connected to the above defined dynamical expo-
nent z(δ):

ε(L, δ) ∝ L−z(δ) (5.2)

in a finite system of length L.
For relevantly aperiodic chains the same type of sce-

nario, i.e. the existence of Griffiths-McCoy singularities,
have been speculated [21]. In the following we are going
to clarify this issue and study the distribution function of
the energy gap ε1 in the disordered phase (δ > 0) of the
RS-chain. In Figure 5 we compare the integrated gap dis-
tribution functions for the random and RS-chains. While
the data for the random chain follow the scaling prediction
in (5.2) with δ = 0.5 lnh ≈ 0.20, z ≈ 2.5, the probability
distribution of the RS-chain is chopped off: there is a L–
independent cut-off at ∆Emin(δ). Consequently there is a
relevant time scale in the problem tr ∼ ∆E

−1
min(δ) and the
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Fig. 6. The off-critical minimum energy gap of the RS-
sequence ln∆E−1

min(h) versus the distance from the critical
point (h− h0 ∼ δ for h→ h0) in the RS sequence for different
system sizes. The straight line has slope −1, as predicted by
(5.5).

autocorrelation function has an exponential decay. The
susceptibility and other physical quantities are analytic
in the whole disordered phase, thus there is no Griffiths-
McCoy region in the RS-chain and we expect a similar
behavior for any other aperiodic quantum spin chain.

We can estimate the minimum energy gap ∆Emin(δ)
as follows: We start with the formula for the excitation en-
ergy in (3.8) and consider a realization with surface order
ms = O(1) and ms = O(1), which is generally connected
to the presence of a very small energy gap. Thus in the
paramagnetic phase 0 < δ � 1 we have

∆Emin(δ) ∼ ε1 ∼
L−1∏
i=1

hi

Ji
∼ exp(AδL−BLω), (5.3)

where A > 0, B > 0. The first term in the exponential
describes the average trend with δ, whereas the second
represents the largest possible fluctuation in the couplings
among all aperiodic sequences of length L. It is important
to note that for a random distribution this second term
could be proportional to L in rare events, implying that in
the random case there is no minimum energy gap. For the
aperiodic chains, however, due to the number of different
realizations that increases only linearly with L the fluc-
tuating energy (1.9) grows slower than L. Consequently
from equation (5.3) one can derive a length scale

lap ∼ δ
−1/(1−ω) (5.4)

that characterizes the most singular sample and the cor-
responding minimum energy gap is then given by

∆Emin(δ) ∼ exp
(
−const . δ−ω/(1−ω)

)
. (5.5)

This relation is indeed satisfied for the RS-chain,
since according to our numerical results in this case
ln∆Emin(δ) ∼ 1/δ, as can be seen in Figure 6.
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6 Random walks in random and aperiodic
environments

As it was shown in paper I and being utilized in Section 4.2
in this paper there is a close relation between the ran-
dom quantum Ising spin chains and the one-dimensional
random walk. Especially the scaling properties of the sur-
face magnetization and that of the low energy excitations
of the random TIM can be obtained from the surviving
properties of a one-dimensional random walk. Here we go
further and emphasize a relation between the random TIM
and the 1d random walk in a random environment.

To be specific, we characterize the one-dimensional
random walk with the nearest neighbor hopping by the
transition probabilities wi,j = w(i → j) for a random
walker to jump from site i to site j with

wi,j =

{
wi,i±1 for |i− j| = 1

0 for |i− j| > 1.
(6.1)

Here we are particularly interested in the general case,
in which the transition probabilities are not necessarily
symmetric, i.e.

wi,i+1 6= wi+1,i. (6.2)

Moreover, the random walker is confined to a finite num-
ber of sites i = 1, ..., L. At the two ends of this interval,
i.e. at i = 0 and i = L+ 1, we put absorbing walls, which
is simply modeled by setting w0,1 = wL+1,L = 0 (i.e. the
walker cannot jump back into the system once landed on
0 or L+ 1). The time evolution of the probability distri-
bution of the walk Pi,j(t), which is the probability for the
walker to be at time t on site j once started at time 0 on
site i, is fully determined by the Master-equation

d

dt
P (t) = M · P (t). (6.3)

Here

P (t) = (Pi,0(t), Pi,1(t), . . . , Pi,L(t), Pi,L+1(t))
T

(6.4)

and the transition matrix is (M)i,j = wi,j for i 6= j and
(M)i,i = −

∑
j wi,j while the initial condition is Pi,j(0) =

δi,j . All physical properties of the model can be expressed
in terms of (left and right) eigenvectors and eigenvalues
of M , very much in the same way as the physics of the
TIM is contained in the eigenvectors and eigenvalues of
the tridiagonal matrix (3.2).

Here we consider first one quantity that gained con-
siderable interest recently in related models for anoma-
lous diffusion [35,36]: The persistence probability Ppr(L, t),
which is the probability that a walker starting at site i = 1
does not cross its starting point until time t. Due to the
absorbing sites at i = 0 and i = L+ 1 its long time limit
ppr(L) = limt→∞ Ppr(L, t) is simply given by [37]

ppr(L) = lim
t→∞

P1,L+1(t) =

1 +
L∑
i=1

i∏
j=1

wj,j−1

wj,j+1

−1

.

(6.5)

Thus, as is shown in [37], there is a one-to-one relation
between the persistence probability (6.5) and the surface
magnetization ms(L) of the TIM (3.6) with the following
correspondences

wi,i+1 −→ J2
i

wi,i−1 −→ h2
i

ppr(L) −→ m2
s(L).

(6.6)

Consequently similar relations hold for the average quan-
tities, when the transition probabilities (or equivalently
the fields and the couplings) follow the same random or
aperiodic modulation.

In the random case the critical point of the TIM
corresponds to the Sinai walk [1], and from equations
(3.6, 4.6, 6.5) we have

[p(rand)
pr (L)]av ∝ L

−1/2. (6.7)

For relevantly aperiodic environments which ar character-
ized by a wandering exponent ω > 0 we get from (4.10)

[p(aperiodic)
pr (L)]av ∝ L

−(1−ω). (6.8)

In the non-critical situation there is an average drift of the
walk, which can be defined through equation (1.2) as

δRW =
[lnw→]av − [lnw←]av
var[lnw→] + var[lnw←]

, (6.9)

where w→ (w←) stands for transition probabilities to the
right (left), i.e. wi,i+1 (wi,i−1). For δRW 6= 0 the average
correlations defined on persistent walks are characterized
by a correlation length

ξ ∼ |δRW |
−ν , (6.10)

with the exponents for the average given in equations
(1.4, 4.16) for the random and aperiodic environments,
respectively.

The dynamical properties of the random walk are dom-
inated by the largest, non-vanishing eigenvalue λm of the
transition matrix M . It can be shown [37] that for λm a
formula similar to equation (3.8) holds, where hi and Ji
have to be replaced by their random walk counterparts
given in (6.6) and for the term msms stands the persis-
tence probability ppr(L). This implies straightforwardly,
using equation (4.2) that in a Sinai walk in the random
and relevantly aperiodic case the characteristic time scales
like

t
(rand)
char ∼

(
λ(rand)
m

)−1

∼ exp(const . Lω) (6.11)

with ω = 1/2 in the random case. As a further conse-
quence, autocorrelations or return probabilities decay log-
arithmically,

P0(t) =
1

L

L∑
i=1

Pi,i(t) ∝
1

lnη(t)
(6.12)
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with η = 2 in the random case and η = 1/ω in the rel-
evantly aperiodic case. This follows from the scaling re-

sult P0(t)2 ∼
[
X2(t)

]−1

av
, where

[
X2(t)

]
av

is the average
mean-square displacement, as already mentioned in the
Introduction.

Finally the Griffiths-McCoy phase of the random TIM
is equivalent to the anomalous diffusion region of the ran-
dom walk with δRW 6= 0, in which case autocorrelations
decay anomalously slow with an exponent γ(δRW ) ≤ 1

P0(t) ∼ t−γ(δRW ) (6.13)

that depends continuously on the drift parameter δRW and
corresponds to the inverse dynamical exponent z(δ) of the
Griffiths-McCoy phase of the random TIM. In the two
limiting cases we have z(δ) = 1/2δ as |δ| → 0 [7] and
z(δ) = 1 as |δ| → ∞. In the latter case we approach the
ballistic situation, when all the steps of the walk are made
in the same direction, thus the average displacement has a
linear time dependence. We can thus extend our dictionary
(6.6) by

λm −→ ε2
1

γ(δRW ) −→ 1/(2z(δ)).
(6.14)

For the aperiodic case with drift we remember the results
of Section 5, in particular equation (5.5) and conclude that
a random walk in a relevantly aperiodic environment for
δRW 6= 0 does not exhibit a region of anomalous diffusion.

7 Summary

To summarize we have studied the effect of random and
aperiodic environments on cooperative processes in one
space dimension. We have shown that at the critical point,
both for the transverse-field Ising model and for the diffu-
sion process, the two types of inhomogeneities have quite
similar consequences, which is based on the same type
of distribution of the low energy excitations (large time
scales). We have obtained – presumably exact – scaling
relations, which connect the values of the surface magne-
tization exponent and that of the correlation length expo-
nent with the known characteristics of the (random and
aperiodic) environments. Besides the similarities between
the critical properties of random and aperiodic models we
have also observed several quantitative differences. For ex-
ample some critical exponents are turned out to be envi-
ronment dependent and – most noticeably – the Griffiths
phase is absent for aperiodic models.
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Appendix: Average critical surface
magnetization for the Rudin-Shapiro chain

We consider the RS-chain in (1.10) generated from a letter
A and calculate the surface magnetization (3.6) for chains
of length L = 22l+1, l =1,2, ... The chain starts at the
1st, 2nd, ..., Nth position of the original RS-chain, such
that N = L 22k, k =1,2, ..., and average over these N
realizations. The average critical surface magnetization in
the limit λ→∞ is given by:

ms(l, k) =
1

N

{
N1(l, k) +

N2(l, k)
√

2
+
Nu(l, k)
√

2k + 1

+H(k)[S1(l) + S2(l)]

}
(A.1)

where

S1(l) =
l−1∑
m=1

2(l−m)
2m−1∑
n=1

1
√

2m−1 + 1 + n
(A.2)

S2(l) =
2l−1−1∑
n=1

1
√

2k−1 + 1 + n
(A.3)

N1(l, k) = 18 · 4k−2 + 9 · 2k−2

+ 5 (2l−1 − 1)(4k−1 + 2k−1) (A.4)

N2(l, k) = 4k−2
(

10 · 2l−1 + 4(l − 1)
)

+
(

5 · 2l−1 + 2(l − 1)− 2
)
· 2k−2 (A.5)

Nu(l, k) = 22k−1 + (4k−1 − 2k−1)(2l−1 − 1) (A.6)

H(k) = 2 · 4k−2 + 2k−2. (A.7)

The asymptotic behavior of lim
k→∞

ms(l, k) is given in equa-

tion (4.7).
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